Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid-β fragment peptide.
نویسندگان
چکیده
Aromatic amino acids have been shown to promote self-assembly of amyloid peptides, although the basis for this amyloid-inducing behavior is not understood. We adopted the amyloid-β 16-22 peptide (Aβ(16-22), Ac-KLVFFAE-NH(2)) as a model to study the role of aromatic amino acids in peptide self-assembly. Aβ(16-22) contains two consecutive Phe residues (19 and 20) in which Phe 19 side chains form interstrand contacts in fibrils while Phe 20 side chains interact with the side chain of Va l18. The kinetic and thermodynamic effect of varying the hydrophobicity and aromaticity at positions 19 and 20 by mutation with Ala, Tyr, cyclohexylalanine (Cha), and pentafluorophenylalanine (F(5)-Phe) (order of hydrophobicity is Ala < Tyr < Phe < F(5)-Phe < Cha) was characterized. Ala and Tyr position 19 variants failed to undergo fibril formation at the peptide concentrations studied, but Cha and F(5)-Phe variants self-assembled at dramatically enhanced rates relative to wild-type. Cha mutation was thermodynamically stabilizing at position 20 (ΔΔG = -0.2 kcal mol(-1) relative to wild-type) and destabilizing at position 19 (ΔΔG = +0.2 kcal mol(-1)). Conversely, F(5)-Phe mutations were strongly stabilizing at both positions (ΔΔG = -1.3 kcal mol(-1) at 19, ΔΔG = -0.9 kcal mol(-1) at 20). The double Cha and F(5)-Phe mutants showed that the thermodynamic effects were additive (ΔΔG = 0 kcal mol(-1) for Cha 19,20 and -2.1 kcal mol(-1) for F(5)-Phe 19,20). These results indicate that sequence hydrophobicity alone does not dictate amyloid potential, but that aromatic, hydrophobic, and steric considerations collectively influence fibril formation.
منابع مشابه
Probing the role of aromatic residues in the self-assembly of Aβ(16–22) in fluorinated alcohols and their aqueous mixtures
The Aβ(16-22) sequence KLVFFAE spans the hydrophobic core of the Aβ peptide and plays an important role in its self-assembly. Apart from forming amyloid fibrils, Aβ(16-22) can self-associate into highly ordered nanotubes and ribbon-like structures depending on the composition of solvent used for dissolution. The Aβ(16-22) sequence which has FF at the 19th and 20th positions would be a good mode...
متن کاملEffects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations
The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...
متن کاملStudy of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملStudy of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملMolecular Self-Assembly of Peptide Nanostructures: Mechanism of Association and Potential Uses
Molecular self-assembly offers unique directions for the fabrication of novel supramolecular structures and advanced materials. The inspiration for the development of such structures is often derived from self-assembling modules in biology, as natural systems form complex structures from simple building blocks such as amino acids, nucleic acids and lipids. Peptide-based nanostructures indicate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular bioSystems
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2011